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Abstract

In the early 20th century, Gestalt psychologists seriously challenged prevailing
notions regarding human perception. They showed that there is a difference between
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1 Introduction

In the early 20th century, a new school of psychology emerged that challenged prevail-

ing notions regarding human perception. The so-called Gestalt theorists, such as Max

Wertheimer, realized that there is a fundamental difference between perceiving the parts

of a picture and perceiving its whole. People may struggle to see the big picture. We have

all had that “aha” moment where a scene suddenly becomes clear (e.g. “oh, it’s a smiley

face”). In addition to the struggles all people face with seeing the whole, neuroscien-

tists have classified a variety of disorders (“agnosias”) such as face blindness (“prosopag-

nosia”), where individual facial features—eyes, nose, and mouth—are recognizable but

it’s difficult or impossible to put a name to the face. As Gazzaniga et al. (2014) put it,

“it’s somewhat like going to Legoland and—instead of seeing the integrated percepts of

buildings, cars, and monsters—seeing nothing but piles of legos.” On the flipside, Gestalt

psychologists noticed that people may integrate the parts into a whole in multiple ways.

The famous duck-rabbit illusion (Figure 1) is a prime example. Some people initially see

a rabbit, others a duck. With prolonged viewing, the interpretation may switch back and

forth, a phenomenon known as multi-stable perception.

Figure 1: Rabbit-Duck Illusion

The main focus of the Gestalt psychologists was visual perception, but their insights

apply more broadly. In many domains, people have all of the information needed to

draw a conclusion yet fail to connect the dots. Consider Fermat’s Last Theorem, which

remained unproven for over three centuries despite the best efforts of mathematicians.
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This contrasts sharply with standard economic models, which assume that agents have

perfect information processing capabilities and can immediately derive all logical conse-

quences of their knowledge.

This paper develops a framework for understanding how people analyze pieces of

information and reason their way to a big picture. We also aim to understand how a big

picture—which may be profitably termed a “narrative”—informs an agent’s view of the

parts.

We consider a model in which an agent is presented with a picture consisting of a grid

of black and white pixels. Their task is to identify whether the picture possesses some

feature—such as whether it depicts a smiley-face. The agent uses codewords to represent

features of pictures. For instance, the agent has codewords corresponding to “the top-

right pixel is black” and “the picture depicts a smiley face.”

The agent has a knowledge set—to which they may add over time—consisting of

codewords that they think apply to the picture and its regions. The agent’s initial knowl-

edge set consists of codewords for each pixel’s color—but no codewords that apply to the

larger picture. In this sense, the agent starts with complete information about the picture

but no understanding of what it represents (e.g. “it’s a smiley-face”).

The agent adds codewords to their knowledge set by loading existing codewords into

working memory and drawing conclusions. For instance, if the agent loads into working

memory “the number of white pixels is even” and “the number of white pixels is prime,”

they draw the conclusion that “there are two white pixels.”

Importantly, the agent has limited working memory, which restricts the number of

codewords they can load. If the agent could load their knowledge of every pixel’s color

into working memory, they could immediately deduce all of the codewords that apply to

the picture. However, limited working memory bounds their ability to draw conclusions.

We consider two variants of the model. In the first, the conclusions the agent draws are

purely deductive, while in the second, the agent extrapolates. The pure-deduction model

yields two key insights. First, the agent may develop only a piecemeal understanding of
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the picture. They may, like a person with face blindness, recognize various parts of the

picture but fail to integrate them and see the whole.

Second, there are some conclusions that can only be reached in multiple steps. The

reason the agent can see more in two steps than one is that the agent can use the first

step to “chunk” information: combine knowledge represented by multiple codewords

into one codeword. Chunking allows the agent to store more information in working

memory—and thereby deduce more. We use the term “chunk” in light of a closely related

literature in cognitive psychology, initiated by William Chase and Herbert Simon.

In the version of the model with extrapolation, the agent adopts codewords when

they “fit the data” sufficiently well—in the sense that there are relatively few alternative

explanations. Extrapolation expands the set of conclusions that can be reached with lim-

ited working memory or limited initial information; but it also introduces the possibility

of mistakes.

When the agent extrapolates, multi-stable perception is a possibility. To see why, con-

sider the rabbit-duck illusion (Figure 1). Depending upon which part of the picture the

agent processes first, the agent can get into one of two steady states. In one, the agent

applies a “rabbit” codeword to the full picture and “rabbit ears” to the left-hand side.

The “rabbit ears” codeword and the “rabbit” codeword mutually reinforce each other.

For instance, the presence of “rabbit ears” in working memory blocks the adoption of al-

ternative explanations to “rabbit”—such as “duck.” In the other steady-state, the agent

applies a “duck” codeword to the full picture and “duck’s bill” to the left-hand side.

These codes, likewise, are mutually reinforcing.

More generally, we refer to the coding of the parts of the picture (e.g. “rabbit ears”

or “duck’s bill”) as mental scaffolding. Mental scaffolding supports the agent’s overall

interpretation of the picture—or “narrative.” This scaffolding, once formed, is hard to

remove—which lends stability to the agent’s perception. When the agent sees a rabbit, in

other words, it becomes hard to see a duck.

The model also suggests that agents gravitate towards simple narratives. In fact, a sim-
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ple narrative that is wrong may be adopted over a complex narrative that is right. Simple

narratives are attractive because they conserve working memory; consequently, it is easy

to employ them and see their consequences. Politicians especially understand the im-

portance of simple narratives. Virtually every successful politician has a memorable line

that distills their philosophy. Ronald Reagan, for instance, is known for: “Government

is not the solution to our problem, government is the problem.” As the political consul-

tant Frank Luntz puts it: “the most memorable political language is rarely longer than a

sentence.”1

In this paper, our initial focus, like the Gestalt psychologists, is on visual perception;

but the model provides a general way of thinking about how agents aggregate and make

sense of information. “Pixels” can be any type of data the agent observes. We show,

for instance, how the model can be extended to capture a causal inference task in which

“getting the picture” involves discerning (i.e. building a theoretical understanding of) the

relationship between actions and outcomes.

We conclude the paper with a discussion of potential applications—including to multi-

agent settings. In a standard persuasion model, influencing another agent involves con-

trolling the information they receive. Our model suggests that it also matters how an

agent processes information. Supplying an agent with a simple narrative, for example,

might affect whether they interpret the data they receive one way or another (e.g. as rab-

bit or duck). Another interesting setting is one where agents encode features into memory

differently—which leads them to see different things in the same data.2 Such agents can

benefit from back-and-forth communication in which each shares insights with the other.

There is, of course, a vast body of work in economics on the limitations of human

reasoning. Simon (1955) famously spoke of economic agents as being “intended rational”

but boundedly so. Simon explicitly pointed to “limits on computational capacity” as

an important constraint on “actual human choice.” The highly influential line of work

1Frank Luntz, ”Words That Work: It’s Not What You Say, It’s What People Hear” (2007), p. 7.
2Depending upon the agent’s coding system, storing a given feature in working memory can take up more
or less space. As a result, the coding system affects what the agent is able to see.
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on “systematic biases” beginning with Kahneman and Tversky3, and developed further

by Thaler, emphasizes the idea that (to use an aphorism of Thaler’s): “it is possible to

strengthen economics by incorporating the idea that some people behave like humans,

at least some of the time.”4 The key observation in this line of work is that “if errors

are predictable, then departures from rational choice models can also be predictable” so

that “it would be possible to improve the explanatory power of economics by adding

psychological realism” (Thaler (2017)).

A comparatively recent strand of work by Shleifer and coauthors seeks to “get in-

side people’s heads” (Shleifer (2010)). For instance, Mullainathan et al. (2008) shows how

“coarse thinkers” can be exploited by those seeking to persuade them. Specifically, when

decision-makers group different situations into categories and apply the same model of

inference within category they may transfer information from a situation in which it is

useful to one in which it isn’t (“transference”). Coarse thinkers are also subject to “fram-

ing effects” where the persuader influences the analogy used by the decision-maker. A

second strand of work in this vein involves salience (see, for instance, Bordalo et al. (2012),

Bordalo et al. (2013a), Bordalo et al. (2013b)). Here, “bottom-up” thinking by a decision-

maker focuses their attention on salient factors that may be prominent or surprising.

This contrasts with the standard approach to bounded rationality, where a “top-down”

thinker optimizes subject to a constraint that reflects a specific deviation from perfect

rationality—such as imperfect memory (Mullainathan 2002 and Wilson 2014), limited in-

formation (Sims 2003), limited attention to decision-relevant variables (Gabaix 2014), or

limited ability to reason about other agents’ strategies (Stahl and Wilson (1994), Crawford

and Iriberri (2007)). Psychologists have, in fact, long debated the extent to which humans

are wired for top-down or bottom-up thinking.5 The presence of bottom-up thinking

means that what is salient can potentially be altered by external parties such as firms or

politicians, to the advantage of that party. Relatedly, knowledge of past choices can inter-
3See, for instance, an early summary in Tversky and Kahneman (1974)
4This quote is contained in Thaler’s poster on the ground floor of the Harper Center at the University of
Chicago Booth School of Business.

5See Broadbent (2013) on the former and Deutsch and Deutsch (1963) on the latter.
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act in interesting ways with bottom-up thinking (Bordalo et al. (2019) and Bordalo et al.

(2020)).

Relative to this work, our contribution is to offer a theory of a central aspect of the

human reasoning process: how one goes from seeing the parts to seeing the whole. Our

theory highlights, in particular, the role that limited working memory plays in the rea-

soning process.

Our paper also relates to a literature on narratives and mental models. Schwartzstein

and Sunderam (2021), for instance, conceive of an agent as choosing a mental model from

an available set that is potentially influenced by a persuader. Eliaz and Spiegler (2020)

conceive of narratives as causal interpretations of events (specifically, directed acyclic

graphs). Bénabou et al. (2018) model the process by which narratives disseminate. Rela-

tive to this literature, we adopt a distinct definition: we think of narratives as understand-

ings of the big picture.

The paper proceeds as follows. Section 2 presents a version of the model in which the

agent is purely deductive. Section 3 considers the possibility that the agent engages in ex-

trapolation as well. Section 4 extends the model to capture a causal inference task, where

the agent develops an understanding of the relationship between actions and outcomes.

Section 5 discusses a variety of applications, including to multi-agent settings. Section 6

concludes. Proofs not offered in the main text are contained in the appendix.

2 Deduction

2.1 Model

An agent is presented with a black-and-white picture P. The picture consists of an M × N

matrix of binary-valued variables pxy that we call pixels. Each pixel is either black or

white (pxy ∈ {black, white}).
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P =


p11 p12 p13 · · · p1N

p21 p22 p23 · · · p2N
...

...
... . . . ...

pM1 pM2 pM3 · · · pMN


As shown in Figure 2, we will use R to denote a particular region of the picture and PR to

denote the corresponding subpicture.

Figure 2

The agent’s task is to work out whether the picture possesses some feature or set of fea-

tures. For example, the agent might be shown the picture in Figure 3 and asked whether

it depicts a smiley face.

Figure 3: Example of a Picture

When we say that a feature f applies to picture P—or subpicture PR—what we mean
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is that the picture (or subpicture) belongs to a particular set. For instance, f might be

the “smiley face” feature; saying that f applies to P means that P belongs to the set of

smiley-face pictures. Formally, we define features as follows.

Definition 1.

1. Let Pm×n denote the set of all pictures/subpictures of size m× n (that is, all black-and-white

matrices of size m × n). We refer to any proper, non-empty subset of Pm×n as an “m × n

feature.”

2. We say that feature f “applies to PR” or “applies to region R of P” if PR ∈ f .

The agent uses codewords to represent features, mapping each feature f to a codeword

c f . We refer to this mapping as the agents “encoding” of features. These codewords are

binary strings; for instance, “01101” might be the codeword for “smiley face.” For exposi-

tional ease, codeword c f must uniquely identify f amongst the set of m × n features—but

not all features (in other words, we allow the agent to have a distinct code for each size of

region). However, our conclusions hold regardless of whether codes are size-specific or

there is a single code.

The agent has a knowledge set consisting of codewords that they think apply to the

picture and its regions. The agent may add codewords to this knowledge set over time.

We denote the agent’s knowledge set at time t by:

Kt = {Kt(R)}R∈R,

where Kt(R) denotes the set of codewords for region R, and R denotes the set of all

regions of P.

The agent’s initial knowledge set K0 consists of codewords for each pixel’s color. In

other words, the agent possesses all of the codewords that apply to 1x1 regions of the

picture, but no codewords for larger regions. In this sense, the agent starts with complete
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information about the picture but no understanding of what it represents (e.g. “it’s a

smiley face”).

The agent adds codewords to their knowledge set by loading existing codewords into

working memory and drawing conclusions. For example, suppose the agent loads the fol-

lowing two codewords for P into working memory: “the number of white pixels is even”

and “the number of white pixels is prime.” The agent concludes that “there are two white

pixels.”

Formally, at time t, the agent loads some of their knowledge into working memory:

Wt = {Wt(R)}R∈R,

where Wt(R) ⊆ Kt(R). From the codewords in working memory, the agent deduces that

a set of codewords ∆t(R) apply to region R.6 At time t + 1, these deducible codewords

are added to the agent’s knowledge set: Kt+1(R) = Kt(R) ∪ ∆t(R).

Importantly, the agent has limited working memory, which restricts the number of

codewords they can load. The agent has the following working memory constraint:

length(Wt) ≤ L,

where length(Wt) is the total length of the codewords in working memory and L is the

agent’s working memory capacity. Shorter codewords (e.g. “0”) take up less working

memory than longer codewords (e.g “1101”). In this sense, we can think of features of the

picture with shorter (longer) codewords as features that are simpler (more complex) for

the agent. Whether a feature is simple or complex depends, of course, on how the agent

encodes it.

We allow the agent to encode features in many different ways; but we make the as-

6Formally, we define ∆t(R) as follows. For a feature f on R, let f P denote the implied feature of the full
picture: f P = {P̂ ∈ PM×N : P̂R ∈ f }. Let f (c, R) denote the feature on region R corresponding to
codeword c. Let f ∆

t =
⋂

R∈R
⋂

c∈Wt(R) f (c, R)P, which is the finest feature that is deducible on the full
picture P. Given a codeword c on region R, we will say that c ∈ ∆t(R) if f (c, R)P ⊇ f ∆

t and c /∈ Kt(R).
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sumption that the agent’s encoding is efficient. That is, there is no alternative encoding

with the property that every codeword is weakly shorter and one codeword is strictly

shorter. Since “white pixel” and “black pixel” are the only two features for 1x1 regions,

efficiency implies that these codewords have length one (i.e. one feature is assigned code-

word “1” and the other “0”). Hence, the parameter L corresponds to the number of pixels

the agent can store in working memory.

2.2 The Agent’s Problem

First, let us describe the agent’s task in greater detail. The agent’s task, denoted τ =

(F, P̂), is defined by a particular set of features (F) and a particular set of pictures (P̂).

For each picture P ∈ P̂ , the task is to identify all features f ∈ F that apply to P (i.e. all f

for which P ∈ f ).

Next, let us discuss what the agent chooses. We opt to view the agent’s encoding of

features as something with which they are endowed—rather than a choice—although, as

we will discuss later, there is reason to think the encoding is affected by past experience.

We have in mind that Wt (what the agent loads into working memory) is potentially a

choice, but we do not consider the usual optimization problem over Wt.7

To elaborate: the standard approach to modeling the agent’s choice of Wt would be

to consider an optimization problem where W0, W1, ... are chosen to maximize some ap-

propriate objective function (subject to the limited working memory constraint and the

constraint that Wt ⊆ Kt) given P (or a prior over P). However, solving this optimiza-

tion problem would entail perfectly anticipating (or forming correct expectations over)

which “big picture” conclusions would be reached at the end of the deductive process

(e.g. whether it is a smiley face)—which we consider to be inconsistent with our premise

that the agent initially does not understand anything about the picture beyond seeing the

individual pixels.

7Wt might also be influenced by the agent’s environment. For instance, a conversation with another agent
might impact what the agent considers.
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Consequently, we are less ambitious in pinning down the agent’s choice of Wt. Instead,

we ask whether a given task (F, P̂) is achievable—specifically, whether for each P ∈ P̂ and

each f ∈ F that applies to P, there exists a working memory sequence W0, W1, ..., Wt such

that f ∈ Kt+1.8 While this approach does not tell us what Wt’s the agent chooses, it tells

us whether the agent will complete the task.

An alternative approach one might take is to ask whether there is an algorithm the

agent could employ for choosing Wt with desirable characteristics (i.e. an algorithm that

performs well over a large set of pictures). This is an interesting question—but one that

is beyond the scope of this paper.

2.3 What can be deduced?

Having outlined our approach to the agent’s problem, let us consider what the agent is

capable of deducing—as well as how long deductions take. We start with the following

definition.

Definition 2.

1. A codeword c is deducible in k steps (c ∈ Dk) if there exists a sequence of working memories

of length k (W0, ..., Wk−1) such that c ∈ Kk.

2. A codeword c is deducible (c ∈ D) if it is deducible in k steps for some finite k.

In order to talk about learning through the deduction process, it is useful to define

what it means for two codewords to be equivalent (i.e. contain the same information).

Definition 3.

1. Codeword c on region R is “equivalent” to codeword c′ on region R′ if the codewords imply

the same restrictions on the picture. Formally:

{P̂ ∈ PM×N : P̂R ∈ f } = {P̂ ∈ PM×N : P̂R′ ∈ f ′},

8We consider the task to be trivially achievable for P if no f ∈ F apply to P.
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where f and f ′ are the features corresponding to c and c′.

Let us also define what it means for the agent to know “everything” (i.e. have a com-

plete understanding of the picture’s features).

Definition 4. We say that the agent knows “everything” if, for any feature f that applies to the

picture, the agent knows an equivalent feature.

We obtain the following proposition.

Proposition 1.

1. If L ≥ M × N: everything is deducible in a single step.

2. If L = 1: the agent cannot deduce anything (i.e. every codeword in D is equivalent to some

codeword in K0).

3. If 1 < L < M × N, for some pictures and encodings:

• The agent can deduce something, but less than everything.

• There are codewords that are only deducible in multiple steps.

Part 1 of the proposition says that if the agent has sufficient working memory (L ≥

M × N), everything is deducible in a single step. Intuitively, if L ≥ M × N, the agent can

store the codeword for every pixel’s color in working memory. If the agent has every pixel

loaded in memory, they can deduce every codeword. Therefore, only when L < M × N

does working memory bound the agent’s ability to make deductions.

Part 2 of the proposition says that if the agent has just one unit of working memory

(L = 1), the agent cannot deduce anything. The reason is that the agent learns the big

picture by combining or integrating codewords. If L = 1, they can store only a single

codeword in working memory.

To understand Part 3, consider Figure 4, which shows a picture P consisting of a 2x2

grid of white pixels. First, let us use the figure to show that there are deductions that take
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W0

(a)

ALL 
WHITE W1

(b)

ALL 
WHITE

ALL 
WHITEW2

(c)

ALL WHITE W1

(d)

Figure 4: A Multi-step Deduction

multiple steps. Suppose the agent’s working memory capacity is two (L = 2). Because

the agent can only load two of the four pixels of P into working memory, they cannot

deduce in a single step that a 2x2–“all white” codeword applies to P. It may be possible

to deduce the 2x2–“all white” codeword in multiple steps, however.

Let RL denote the left-hand side of P and RR denote the right-hand side. The agent

can load their knowledge of the two pixels on the left side (panel a) and deduce that an

“all white” codeword applies to RL (panel b). The agent can do the same for the right

side (panels b and c). Suppose the 2x1–“all white” codeword that the agent applies to the

2x1-regions RL and RR has length one. Then, the agent has sufficient memory capacity

to load the 2x1–“all white” codewords for RL and RR and deduce that an 2x2–“all white”

codeword applies to P (panel d).

Now, let us use Figure 4 to show that the agent may be able to deduce something but

not everything. If the “all white” codeword for 2x1 regions is longer than one, the agent

cannot simultaneously load the 2x1–“all white” codewords for RL and RH: this path to
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deducing a 2x2–“all white” codeword for P is blocked. There is one alternative path the

agent could use, focusing on the top and bottom of the picture (RT and RB) rather than

the left-hand side and right-hand side. However, this path is also blocked if the 1x2–

“all white” codeword for 1x2 regions is longer than one. Thus, if both of these 1x2–“all

white” codewords are longer than one, the agent cannot deduce everything; but they can

still deduce that RL, RR, RT, and RB are “all white”—hence they can deduce something.

2.4 Chunking

If we examine the multi-step deduction depicted Figure 4, the key thing the agent does

between steps is condense information. Specifically, the agent combines multiple code-

words, with a high memory demand, into fewer codewords with a lower memory de-

mand. For instance, the two pixels on the left-hand side of P are initially represented

by two codewords—one codeword for each pixel—which require two units of working

memory. These codewords are then combined into a single “all white” codeword, which

requires only one unit of working memory.

We refer to this process of combining codewords as “chunking” in light of a closely

related literature in cognitive psychology. The term “chunk” was introduced by Miller

(1956), who made a remarkable discovery about short-term memory. Miller found that

the ease or difficulty of remembering information depends upon how it is stored. For

example, a telephone number can be stored as a string of individual digits (e.g. 5, 1, 2,

3, 4, 8, 2) or as a set of larger numbers, or chunks, (e.g. 512, 3482). Chunking the phone

number, he discovered, significantly reduces the strain on memory.

William Chase and Herbert Simon further developed the concept of chunking in a

famous 1973 paper.9 They conducted an experiment in which expert and novice chess

players were shown board positions for five seconds and then asked to reconstruct the

positions from memory. When participants were presented positions from actual chess

games, the experts significantly outperformed the novices. On average, experts correctly

9Chase and Simon (1973) build on earlier experimental results of De Groot (1965).

14



recalled the locations of 16 out of 24 chess pieces, while novices only recalled 4 out of 24.

However, when participants were shown random board positions, there was no difference

between experts and novices; furthermore, both groups performed even worse than the

novices did on actual board positions.

Chase and Simon posited that expert players have a greater ability to chunk typical

chess configurations. In terms of the model, we can think of experts and novices as hav-

ing different encodings of features. Experts assign short codewords to common board

positions, whereas novices do not. This allows experts to represent a board position with

just a few short codewords, in contrast to novices.

(a) Game Board

H I
(b) Game Board - Chunked

Figure 5: Chunking a Chess Board

To make this point more concrete, consider Figure 5. Panel (a) shows a constellation of

pixels that we might think of as akin to the position of pieces in a board game (obviously,

a slightly different game from chess). Panel (b) shows that one way of representing this

configuration is as an “H” and an “I.” Suppose one agent (akin to the expert chess player)

has short codewords for “H” and “I”—as they might if they are familiar with the Latin

script. Say both codewords have length three. If this agent stores the board as an “H”

and “I”, it takes up just six units of memory—far less memory than the fifty units needed

to store fifty individual pixels. Suppose a second agent (akin to the novice) has long

codewords for “H” and “I.” This agent may not find it any better to store the board as an

“H” and an “I” than as fifty pixels.
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(a) (b)

Figure 6: Example - Line Measurement

2.5 Detecting a Line and Measuring its Length

In order to build some further intuition about the model, let us consider a slightly more

involved perception task. Suppose an agent’s task is to detect whether a picture P, such

as the one shown in panel (a) of Figure 6, contains a horizontal line surrounded by white

space, and if so, to determine its length.

One way the agent could complete this task is by storing all of the relevant pixels.

Panel (b) of Figure 6 shows all of the pixels the agent would need to store—fifteen in

total—to detect the line of length three. Notice that the agent needs to store all of the

pixels surrounding the line; otherwise, they might draw an incorrect conclusion about

the line’s length or whether it is a line at all.

This method of identifying horizontal lines requires a working memory capacity of

L = 3(n + 2) for a line of length n—which is obviously quite large. Let us see whether

there is a method that requires less working memory—in particular, a method where the

memory requirement is not growing in n.

Figure 7 shows two types of picture features, which we denote by Sn and Ln respec-

tively. We say that a 3 × (n + 1)– region has feature Sn if it contains a line of length n and

there is one column of white pixels immediately to the left of the line (see panel a). We

say that a 3× (n + 2)–region has feature Ln if it contains a line of length n and there is one

column each of white pixels on both sides (see panel b).

Features Sn and Ln could have long or short codewords—it all depends upon how the

agent encodes features. In principle, though, the agent could use codewords of length
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(a) Feature S3 (b) Feature L4

Figure 7: Two Features

one for both Sn and Ln features: for instance, by assigning each Sn with codeword “0”

and each Ln with codeword “1”, or vice versa.

Figure 8 shows how these two codewords can be used to complete the line measure-

ment task. In panel (a), the agent stores six pixels in working memory and deduces that

S1 applies to the associated region. In panel (b), the agent stores codeword S1 plus three

additional pixels and deduces a codeword S2. The agent continues until they reach the

end of the line—at which point they deduce L3, which corresponds to a line of length

3. If the codewords for Sn and Ln have length one, the point where working memory is

most strained is panel (a), where the agent must store six pixels. Hence, a line of arbitrary

length can be detected and verified with working memory capacity of L = 6. Observe

(a)

S1

(b)

S2

(c)

S3

(d)

L3

(e)

Figure 8: Line Measurement
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that the working memory required is fixed now rather than growing in n.10

This example illustrates how the agent’s encoding can generate more or less efficient

strategies for detecting features. Assigning short codes to features Sn and Ln allows the

agent to efficiently chunk lines—just as expert chess players are able to efficiently chunk

and remember board positions.

2.6 Optimal Codes

As we noted in Section 2.2, we opt to think of the agent’s code as something they are

endowed with—rather than a choice. Nonetheless, there is reason to think that it evolves.

Chase and Simon (1973)’s experiment provides suggestive evidence. Their results could

be purely the result of selection (i.e. better chess players are endowed with better codes);

but it seems more likely that better chess players have better codes because they have

more experience with chess.

This raises a variety of questions—such as how codes evolve. However, an even more

basic question is what we mean by a “better” code or an “optimal” code. Here, we give

one possible definition of optimality and discuss its properties.

Recall that we defined a task in Section 2.2 by τ = (F, P̂), where F is the set of features

that need to be identified and P̂ is the set of pictures on which identification needs to be

achievable. We denote the agent’s code by C. For a given task and code, let Lmin(τ, C) de-

note the minimum amount of working memory capacity needed for the task to be achiev-

able.

We say that a code is τ-optimal if it minimizes the amount of working memory needed

for the agent’s task τ.

Definition 5. Let C∗(τ) = arg minC{Lmin(τ, C)} denote the code (or set of codes) that minimize

the working memory needed for task τ. We will refer to C∗(τ) as the optimal code(s) for task τ.

10In a version of the model where the agent has a single code—rather than a code for each size of region—
the same incremental deductive process can still be used to save working memory. However, the savings
are slightly less since each Sn and each Ln requires its own codeword. In this case, the required working
memory would instead be on the order of log n.
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It is relatively easy to show that the optimal code depends upon the task, which we

state as Proposition 2.

Proposition 2. The optimal code is task-specific. That is, for some tasks τ and τ′, C∗(τ) ∩

C∗(τ′) = ∅.

Proof. See appendix.

To gain intuition for this result, recall some of the tasks we have considered. In Figure

4, the agent’s task is to identify whether a picture is “all white.” In Figure 5, the agent’s

task is to identify board positions composed of letters. In Figure 6, the task is to detect a

line and measure its length. In each case, we showed that working memory is conserved

by assigning short codewords to particular features. In the first case, it makes sense to

assign a short codeword to “all white” regions. In the second case, it is ideal to assign

short codewords to the letters “H” and “I.” In the line identification task, it makes sense

to assign Sn and Ln short codewords.

Recall that the number of short codewords is limited. For instance, there are only two

codewords of length one (“0” and “1”). Consequently, a code that is geared towards the

first task (detecting all-white pictures) is less geared towards the second task (detecting

letters).

This result suggests that agents may have different competencies. One agent might

have a code that leads them to excel at chess, while another might have a code that leads

them to excel at Go. We will discuss later how the model might be profitably extended to

environments where agents have different competencies.

3 Extrapolation

So far, we have assumed that the agent uses deduction alone to learn about the picture.

Deduction, in some cases, may be a powerful tool for learning about a picture; but in

other cases, it may not take the agent very far. When the agent struggles to learn about a

picture through deduction alone, extrapolation may take them further.
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(a) Limited working memory.
(b) Limited observation.

Figure 9: Benefits of Extrapolation

Figure 9 shows two cases where extrapolation is useful. In panel (a), the agent’s task is

to detect whether the picture contains a horizontal line. Their working memory capacity

is twenty-two pixels; if they could load just two more pixels, they could deduce that the

picture contains a horizontal line. To keep the example simple, suppose loading pixels is

the only way the agent can detect the line. It might make sense in this case for the agent

to extrapolate (i.e. decide that there is a line even though they cannot be sure).

In panel (b), the agent is not able to see all of the pixels of the picture. Formally, we

can think of this as a case where the agent’s initial knowledge set K0 contains only some

of the pixels of P. Even if the agent has unlimited working memory, they cannot deduce

that the picture depicts a smiley face; nonetheless, this would be a reasonable conclusion

to draw. Thus, here too, extrapolation has value.

We now consider a version of the model where the agent makes extrapolations, adding

codewords to the knowledge set whenever they “fit” sufficiently well with the facts in

working memory.

3.1 Model

As in the deduction model, the agent loads a subset of their knowledge into working

memory at time t (Wt ⊆ Kt). In addition, the agent considers a particular codeword c on

region R for inclusion in, or exclusion from, the knowledge set (inclusion when c /∈ Kt(R)
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or exclusion when c ∈ Kt(R)).

The agent bases their decision to include/exclude codewords on whether their “fit”

with the facts in working memory is high or low. We denote codeword c’s fit by ΦR(c, Wt)

(we will say more about how this fit function is defined momentarily). The agent includes

codeword c if fit weakly exceeds a threshold α and excludes codeword c if fit is weakly

below a threshold β (with 0 ≤ β < α ≤ 1). Formally, Kt+1(R) = Kt(R)∪ {c} if Φ(c, Wt) ≥

α and Kt+1(R) = Kt(R)− {c} if Φ(c, Wt) ≤ β.

The fit function we adopt takes the following form.11 We define ZR(Wt) as the number

of subpictures on region R that are consistent with Wt. We define ZR(Wt, c) as the number

of subpictures on region R that are consistent with Wt and c.12 The fit of code c is the ratio

of these quantities:

ΦR(c, Wt) =
ZR(Wt, c)
ZR(Wt)

.

In the special case where no picture is consistent with the “facts” (ZR(Wt) = 0), which

is possible given that the agent extrapolates—hence their “facts” may be wrong—we as-

sume that fit is equal to zero.

According to this definition, fit depends upon the fraction of subpictures that have

feature c among those that meet the facts in working memory. Notice that deduction is

equivalent to adopting codewords only when they have perfect fit (ΦR(c, Wt) = 1).

To get a better sense of how the fit function works, consider Figure 10, which expands

on the horizontal line example. Panel (a) shows the agent’s working memory, which

contains twenty-two of the picture’s twenty-four pixels. Panels (b) and (c) show two

codewords, c1 and c2, the agent is considering applying to P. Observe that ZP(Wt) = 4:

there are four pictures consistent with Wt since two pixels are not pinned down by Wt.

There is a single picture consistent with c1 and Wt, so ZP(Wt, c1) = 1. Likewise, there is a

single picture consistent with c2 and Wt, so ZP(Wt, c2) = 1. Thus, both c1 and c2 have fit

11The appeal of the fit function we adopt here is its simplicity; but there may be other fit functions worth
considering.

12By “consistent with Wt (Wt and c)” we mean that a subpicture satisfies all of the conditions in Wt (all of
the conditions in Wt, as well as c).
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(a) Working memory (Wt). (b) Codeword c1. (c) Codeword c2.

Figure 10: Example - Fit Function

of 1
4 . Codeword c2 does not actually apply to the picture; but it still has high fit since it is

consistent with the facts in working memory.

In contrast to the deduction model, we assume that both the facts the agent loads

(Wt) and the codeword the agent considers for inclusion/exclusion (c) take up space in

working memory. Thus, the agent’s working memory constraint is:

length(Wt) + length(c) ≤ L.

Notice that this constraint tends to privilege short codewords for inclusion in knowl-

edge. To illustrate, consider codewords c1 and c2 from Figure 10. Both have the same fit;

but perhaps the horizontal line codeword, c1, is short and c2 is long. It might be hard for

the agent to stick c2 into working memory, and this might favor the adoption of c1.

Thus, we see a new way in which the agent’s code matters. When the agent extrap-

olates, they tend to opt for extrapolations coded as simple over extrapolations coded as

complex. If the agent thinks of lines as simple, the agent will look for lines; or if the agent

thinks of faces as simple, the agent will look for faces.

3.2 The Agent’s Problem

We will not discipline the agent’s problem beyond the rules governing extrapolation. In

particular, we do not impose a task upon the agent, and instead allow the reasoning

process to unfold without reference to objectives. Put another way, we examine which

sequences of knowledge sets {Kt}t=1,2,... are achievable—given the agent’s initial knowl-
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edge K0, code C, working memory constraint L, and the fitness parameters α and β.

Consider that under extrapolation, the agent’s knowledge set may either expand (as

codewords are added) or shrink (as codewords are removed)—unlike the case of de-

duction, where codewords are only ever added. Consequently, unlike under deduction,

a long-run steady-state may never arrive. Instead of simply examining a snapshot of

the agent’s long-run knowledge set to check whether specific features are successfully

learned—as our previous approach to analyzing deduction entails—our approach to ex-

trapolation also examines the agent’s knowledge sequences: whether they exhibit dynam-

ics such as cycling where codewords are learned then unlearned, or path dependence in

what knowledge is eventually acquired.

3.3 Useful Codewords

Some codewords may be more “useful” than others to the agent for the purposes of mak-

ing deductions or extrapolations. Figure 11 provides an example. Suppose the agent

knows that codeword “smiley-face” applies to picture P and they are considering what

codewords to apply to region R. Clearly, “smiley-face” is a very useful codeword as it

makes it easy to conclude that “two eyes” is a feature that applies to region R.

R

Figure 11: Example of Usefulness

More generally, we can think of a codeword as useful for a region R if it reduces the

set of possible subpictures on R. Formally, we define usefulness as follows.
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Definition 6. We define codeword’s c’s “usefulness” for an m × n-region R as:

ΓR(c) = 1 − 1
m × n

log2 ZR(c)

Usefulness takes the value zero when codeword c does not reduce the possibility set

at all (since, if c does not reduce the set of subpictures, ZR(c) = 2m×n). Usefulness takes

the value one when codeword c perfectly pins down what happens on region R (since, in

this case, ZR(c) = 1).

As we have already mentioned, analyzing how the agent chooses Wt is a difficult

problem. Nonetheless, usefulness is a feature that clearly makes a codeword attractive

for inclusion in working memory. Another feature that makes a codeword attractive is

short length. Put another way, the agent is likely to gravitate towards codewords that

are simple and have a lot to say about what is going on. We capture this idea with the

following assumption.

Assumption 1. Suppose, at time t, the agent is evaluating a codeword c that applies to region

R for inclusion/exclusion. Suppose c′ ̸= c and c′′ ̸= c are codewords in the agent’s current

knowledge set Kt; c′ is weakly more useful than c′′ on region R; c′ is weakly shorter than c′′; and

at least one of these two inequalities is strict. If the agent loads c′′ into working memory (Wt), then

they also load c′.

What Assumption 1 says is that there may be some codewords that the agent is highly

prone to use once they are part of the knowledge set. If we return to Figure 11, for in-

stance, Assumption 1 says that, once the agent has seen that the picture is a smiley face,

it may be hard for them not to think of the picture as a smiley face.

3.4 Possible Outcomes

Let us examine the types of outcomes that can arise when the agent extrapolates. We start

by defining three concepts.
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Definition 7.

1. Path dependence: given initial sequences of working memory (i) W0, ..., Wk and (ii) W ′
0, ..., W ′

k

we say that there is “path dependence” if there is a codeword c such that, for any subsequent

working memory sequence, c ∈ Kt(R) for t > k under initial sequence (i) and c /∈ Kt(R)

for t > k under initial sequence (ii).

2. Cycling: given an initial sequence of working memories W0, W1, ..., we say that there is

“cycling” if there is a codeword c such that c ∈ Kt(R), c /∈ Kt′(R), and c ∈ Kt′′(R), with

t < t′ < t′′.

3. Patchwork quilt: given an initial sequence of working memories W0, ..., Wk, we say that

there is a “patchwork quilt” if there are codewords {c1, ..., cl} that apply respectively to

regions {R1, ..., Rl} such that, for any subsequent working memory sequence, cj ∈ Kt(Rj)

for all j and all t > k and {c1, ..., cl} are not mutually consistent (i.e. there is no picture P

with all of these features).

When there is path dependence, there are multiple stable perceptions. The agent

might, for instance, see either a rabbit or a duck in Figure 1. When there is cycling, the

agent flips between unstable perceptions. For example, the agent might see a rabbit, a

duck, and then a rabbit again. When there is a “patchwork quilt,” the agent has a piece-

meal understanding of the picture, interpreting the pieces in inconsistent ways (e.g. part

rabbit, part duck). It turns out that all of these are possibilities. We state this as proposi-

tion 3.

Proposition 3. Under Assumption 1, there exist pictures P and codes C such that the following

are possible: (i) path dependence, (ii) cycling, and (iii) patchwork quilts.

Proof. See appendix.

To gain intuition for this result, let us continue with the rabbit-duck example. Figure

12 shows how path dependence might arise. Suppose in early periods the agent puts
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RABBIT

Rabbit - Step 1

RABBIT’S
EARS

RABBIT’S
HEAD

RABBIT

Rabbit - Step 2

DUCK

Duck - Step 1

DUCK’S
BILL

DUCK’S
HEAD

DUCK

Duck - Step 2

Figure 12: Example of Path Dependence

into working memory features of the right-hand side of the picture (“Rabbit - Step 1”).

The right-hand side is arguably the more rabbit-like side; focusing on this side might

lead the agent to extrapolate that the picture depicts a rabbit. “Rabbit” is presumably a

useful codeword; imagine it is also short. Then, under assumption 1, the agent will keep

“rabbit” in working memory as they continue analyzing the picture. Keeping “rabbit” in

mind may then lead the agent to conclude that the left-hand side depicts “rabbit ears”

and, if they have not concluded so already, that the right-hand side depicts a “rabbit’s

head” (“Rabbit - Step 2”). If, by contrast, the agent starts their analysis of the picture on

the left-hand side, the agent may extrapolate that the picture depicts a duck (“Duck - Step

1”); the agent may then interpret the parts of the picture accordingly (“Duck - Step 2”).

To understand why cycling might arise, consider Figure 13. Imagine the agent reaches

a rabbit interpretation of the picture and its parts (“Step 1”) by a process along the lines

illustrated in Figure 12. In contrast to the previous case, however, suppose that there is

some set of features from the left-hand side that, if loaded into working memory, leads
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RABBIT’S
EARS

RABBIT’S
HEAD

RABBIT

Step 1

RABBIT’S
HEAD

RABBIT

Step 2

RABBIT’S
HEAD

DUCK

Step 3

DUCK’S
BILL

DUCK’S
HEAD

DUCK

Step 4

Figure 13: Example of Cycling

the agent to exclude “rabbit’s ears” from the knowledge set—even if “rabbit” is loaded

in working memory, per assumption 1 (“Step 2”). “Rabbit’s ears” is, in this sense, an

unstable interpretation of the left-hand side of the picture—which is why the codeword is

underlined in Figure 13.

Eliminating “rabbit’s ears” from knowledge may destabilize “rabbit.” To see why, sup-

pose that “rabbit’s ears” was a short, useful codeword. Per assumption 1, it would have

been loaded into working memory if the agent ever considered excluding “rabbit” from

the knowledge set. This would have helped the agent maintain “rabbit” in the knowledge

set. Suppose that, with the elimination of “rabbit’s ears,” the agent uses the left-hand side

to eliminate “rabbit”—and also extrapolate to “duck” (“Step 3”). The “duck” codeword

then leads the agent to reinterpret the parts of the picture accordingly (“Step 4”). Notice

that the “duck’s head” codeword could be unstable too. If so, the whole process can run

in reverse, taking the agent back to “rabbit” (“Step 1”).

Finally, consider how the agent might end up with a patchwork quilt. Suppose the
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agent starts by loading features of the right-hand side into working memory, leading to

a rabbit-like interpretation (e.g. “rabbit’s head”). However, they might not extrapolate a

“rabbit” code for the whole picture. Similarly, they might load features of the left-hand

side and develop a duck-like interpretation (e.g. “duck’s bill”)—but again, they might

not extrapolate a code for the whole picture. Notice that, even if “rabbit’s head” and

“duck’s bill” are inconsistent, the agent might not realize the inconsistency. Realizing the

inconsistency requires loading certain facts in memory—and this may exceed the agent’s

working memory capacity.

DUCK’S
BILL

NO BIG PICTURE

RABBIT’S
HEAD

Figure 14: Example of a Patchwork Quilt

3.5 What does the picture actually depict?

Notice that we have not actually taken a stance on which features apply to the rabbit-

duck picture. There are several potential answers one could give. Which answer one

gives affects one’s interpretation of the results.

1. The picture is either “rabbit” or “duck”: one possibility is that one of the two fea-

tures applies to the picture. For instance, maybe it is a “rabbit” but not a “duck”

(despite looking duck-like). The implication of path dependence then is that the

agent might land on a correct interpretation (“rabbit”) or an incorrect one (“duck”).

2. The picture is neither “rabbit” nor “duck”: another possibility is that the picture is

neither (despite looking rabbit-like and duck-like). The implication of path depen-
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dence in this case is that there are multiple incorrect interpretations the agent can

reach.

3. The picture is both “rabbit” and “duck”: another possibility is that there are very

few pictures that are both “rabbit” and “duck” but this picture happens to be one of

them. The implication of path dependence here is that the agent only sees a partial

truth. They see “rabbit” but not “duck,” or “duck” but not “rabbit.”

3.6 Mental Scaffolding

When there are two stable perceptions, as illustrated in Figure 12, a natural question is

what gives them stability.

To see where stability comes from, suppose “rabbit” and “rabbit’s ears” are short,

useful codewords that, per Assumption 1, are both likely to be invoked. Then, if the

agent considers removing the “rabbit’s ears” codeword from the knowledge set, they will

keep the “rabbit” codeword in mind—and vice-versa. This keeps the agent from rejecting

either codeword. Effectively, the agent says to themself: “I know this is a rabbit, so these

must be the ears” and “I know these are rabbit’s ears, so this must be a rabbit.” In this

sense, “rabbit” and “rabbit’s ears” are mutually reinforcing codewords. In the same way,

“duck” and “duck’s bill” are mutually reinforcing.

At a more general level, we can think about a “narrative” (i.e. codeword for the whole

picture) that is supported by sub-narratives (i.e. codewords for parts of the picture). We

refer to the sub-narratives that play this role as “mental scaffolding.” Mental scaffolding

is key to providing stability to the agent’s overall narrative.

4 Causal Inference

Our initial focus is on visual perception because it provides useful intuition. However,

“pixels” can be any type of data the agent observes; and the model can be used to consider

any setting where an agent tries to make sense of data and understand its meaning.
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Here, we illustrate this point by considering a simple extension of the framework to a

setting where the agent is presented with k observations. Each observation i is an exper-

iment undertaken by the agent where they take a set of actions (a1i, ..., ani) and observe a

set of outcomes (o1i, ..., omi). We show how the model can be adapted to examine how the

agent learns about the connection between actions and outcomes.

Let V = {vi}k
i=1 denote the k observations presented to the agent, where vi denotes

observation i. Observation i takes the following form:

vi =



a1i
...

ani

o1i
...

omi


.

We assume that each action and each outcome takes the value zero or one—since this is

equivalent to pixels that are black or white—but this is easily generalized.

Observe that a vector is just a picture with a single column. Our definition of features

for pictures carries over to vectors. In addition to features of vectors, we can define a new

concept—a “common feature”—which we denote κ = ( f , S). We say that κ is “applicable

to V” if f is a feature that is common to a subset S of the observations in V (vi ∈ f for all

i ∈ S).

A special type of common feature is one that applies to all of the observations. We will

refer to this special type of common feature as a “general feature.” To illustrate, a general

feature of V might be a1i = o1i. If the agent has this general feature in their knowledge set,

it is akin to having a model of the world that says that a particular action (a1i) determines

a particular outcome (o1i). Another type of general feature might be o1i = o2i. We can
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think of this as a model of the correlation between certain types of outcomes.13

The equivalent of a “region R” in this case is a set S of observations; and the equiv-

alent of region size is the cardinality of set S. We assume that for common features of

a given cardinality, the agent has a code that uniquely maps those common features to

binary strings (i.e. codewords). Notice that a common feature κ can capture a single el-

ement of a single vector i by setting S = {i} and selecting f to represent a single vector

element. Let us refer to such common features as “pixels.” We assume that the agent’s

initial knowledge set K0 consists of codewords for pixels only.

The agent learns in the same way they do in the original model. They add code-

words from their current knowledge set to working memory (Wt ⊆ Kt), and they con-

sider whether to include a codeword c in (or exclude a codeword c from) Kt+1(S), where

Kt+1(S) denotes the common codes applied to S at time t + 1. The same fit function

(ΦR(c, Wt)) can be used again, only replacing R (region) with S (set).

If we allow some pixels to be missing from the agent’s initial knowledge set K0, this

accomplishes three things. First, it captures the possibility that the agent is simply missing

some data (i.e. there are outcomes or actions they failed to measure).

Second, we can use missing pixels to capture an agent who makes predictions. To

illustrate, suppose there is a vector j where all of the actions are part of K0 but none of the

outcomes are part of K0. Suppose the agent, through extrapolation, adds a general feature

to their knowledge set such as a1i = o1i. This general feature is now a model that makes a

prediction about the outcomes that will arise if the agent takes the actions in vector j (i.e.

o1j = a1j).

Finally, allowing some pixels to be missing means that the agent’s model can be prob-

abilistic rather than deterministic. For example, suppose there is an action j that is not

part of K0 for any i (i.e. aji is not part of K0 for any i). When the agent extrapolates, they

can treat action j like an unobserved random variable that influences outcomes.

Recall that, in the original visual-perception model, we found that the agent may be

13Note that we can eliminate actions from the vectors in V and have outcomes only. In this case, the agent
is building a purely correlational model of the world.
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able to see something but not everything (see Proposition 1). Analogously, in this exten-

sion, the agent may understand some of the implications of their actions but not all of

the implications. In addition, as in the rabbit-duck example, the agent may make mis-

takes. They may draw incorrect inferences about the consequences of their actions and

find it difficult to see why their model of the world is flawed. We consider some of the

consequences of this idea in the next section.

5 Discussion

Here, we discuss a variety of applications and possible extensions of the model.

5.1 Multi-agent Settings

Our focus thus far has been on an environment with a single agent; but there are many

settings of interest with multiple agents.

Back-and-Forth Communication.

An important idea in organizational economics is that boundedly rational individuals

can achieve superior outcomes when working together (see Simon (1947)). A version of

our model with multiple agents speaks to this idea; moreover, it makes sense of why it is

important for agents to have back-and-forth communication.

Consider, for instance, a setting where two agents have different codes. They are pre-

sented with the same picture P and have the same initial knowledge, consisting of all of

the pixels of P. Both agents are purely deductive. Suppose both agents are able to deduce

something but not everything about the picture on their own; and because of their differ-

ent codes, the agents deduce different things. Let F0
1 and F0

2 denote the features agents 1

and 2 deduce respectively.

Clearly, the agents benefit from sharing their deductions: agent 1 can add F0
2 to their

knowledge set and vice-versa. However, the benefits do not stop there. Notice that agent
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i, having added features from F0
j to their knowledge set may be able to make further de-

ductions. Let F1
i denote the additional deductions of agent i. The agents can communicate

these additional deductions; and perhaps even more deductions will result (F2
i , F3

i , ...).

We see then that communicating back-and-forth can generate continual revelations.

This captures a feature of communication that is intuitive, yet absent from existing mod-

els. In models where agents simply have different initial information, they share what

they know and there is no further reason to communicate.

Notice that agents do not need to communicate back-and-forth, or even at all, when

their codes are the same—since neither agent sees something the other agent fails to no-

tice. If agents’ codes are very different, they may benefit from one round of communica-

tion, but there is no need for multiple rounds. Agent 1 shares features that are simple for

them but complex for agent 2. Thus, agent 2 cannot put agent 1’s insights to use to learn

more about the picture. Consequently, the realm where back-and-forth communication is

most fruitful is where agents’ codes are different, but not too different.

Influence Activities.

In a standard economic model of persuasion, a principal influences an agent by con-

trolling the information the agent receives (e.g. Kamenica and Gentzkow (2011)). In our

model, what an agent believes depends not only on the information they receive but also

on how they interpret that information. This suggests a variety of additional channels

through which persuasion can operate.

First, notice that it matters whether a principal intervenes early or late. As we saw

in our discussion of path dependence, before an agent has a big-picture view, they are

somewhat impressionable. They are open to seeing a “rabbit” or a “duck.” Once a big-

picture view forms, though, an agent is harder to move.

Consider two ways in which a principal can intervene to influence an agent. One ap-

proach is to present information in a particular order. Recall, for example, that it matters

whether the agent first focuses on the left-hand side or the right-hand side of the rabbit-

duck image. One implication is that a politician with damaging information about an
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opponent may want to get it out early. Should voters get to know the opponent—and

form a favorable view—they may no longer be receptive to the damaging information.

Another way in which a principal might exert influence is by supplying a narrative.

In terms of the model, we might think of this as getting an agent to consider a particular

codeword c for inclusion in knowledge. Supplying a particular narrative—such as “rab-

bit,” “rabbit ears” or both—may tilt the agent towards a rabbit interpretation and away

from duck.

Notice that simple narratives are more likely to be resonant than complex ones—even

when they are wrong. Simple narratives conserve working memory; hence, it is easier for

agents to think in terms of them and consider their implications. All politicians know the

importance of keeping their message simple. For instance, take Ronald Reagan’s famous

line: “Government is not the solution to our problem, government is the problem.” Simi-

larly, John F. Kennedy’s “Ask not what your country can do for you, ask what you can do

for your country” is a simple narrative with far-reaching implications.

In 2013, the Italian programmer Alberto Brandolini wrote: “The amount of energy

needed to refute bullshit is an order of magnitude bigger than that needed to produce it.”

This has since come to be known as Brandolini’s law.14 We might interpret Brandolini

in terms of the power that simple narratives have. Sometimes the truth is complex (i.e.

agents may not have short codewords for the true state of the world). In such instances,

simple, false narratives may be hard to counteract.

5.2 Categorization

The psychological literature on categorization, starting with the work of Eleanor Rosch

and colleagues, highlights a fascinating phenomenon (see, for example, Rosch (1973)).

People normally perceive categories in binary terms: an item either belongs or not. At the

same time, some items are considered more exemplary than others. For instance, a robin

14A similar adage—often misattributed to Mark Twain—goes “A lie can travel halfway around the world
while the truth is putting on its shoes.”
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is generally perceived as a more exemplary “bird” than an ostrich.

In fact, the most exemplary items—rather than being the most common or average—

are often exaggerated forms. Young boys often dress up as soldiers and young girls as

princesses precisely because these exaggerated images are particularly exemplary of the

categories “male” and “female.”

Our model speaks to these findings. Features are binary in the model: a feature f , and

associated codeword c, either apply to a picture P or not. At the same time, given some

aspects of the picture (say, Wt), codeword c may have higher or lower fit (i.e. ΦP(c, Wt)

may be higher or lower). If many of the features of a picture P, and its subpictures, have

high fit, we might say that P is particularly exemplary of codeword c. Such a picture is

one where the agent is particularly likely to extrapolate to codeword c. It may be easier,

for instance, for an agent to extrapolate to “bird” from a picture of a robin than a picture

of an ostrich.

We might ask what pictures, in this sense, most scream “bird.” One might guess the

picture that most screams “bird” is a picture of a bird. However, this is not necessarily

the case. In fact, the birdiest picture may be highly exaggerated or abstracted: Picasso’s

take on a bird rather than a photograph. Note that the exact nature of this abstraction will

depend critically upon the agent’s code.

A classic experiment by the biologists Niko Tinbergen and Albert Perdeck illustrates

the importance of exaggeration and abstraction (see Tinbergen and Perdeck (1951)). To

induce a parent to regurgitate food, herring gull chicks peck at a red spot on the parent’s

(a) Herring gull. (b) Red Rod.

Figure 15: Tinbergen and Perdeck’s Experiment
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bill (see Figure 15, panel a). Tinbergen and Perdeck ran a series of experiments to test

the pecking behavior of these chicks. They found that the chicks peck just as much at a

model of an adult gull’s head, or a model of the beak alone. However, most surprisingly,

they found that a red rod with three white stripes (see panel b) induced 25 percent more

pecks from the chicks than any of the other alternatives. In other words, the abstracted

beak—which wasn’t a beak at all—was most exemplary to the chicks.

5.3 Visual Perception

Finally, consider two extensions of the model that capture additional features of visual

perception.

Perceiving depth.

People often perceive two-dimensional images as three dimensional. Take Figure 16, for

instance, which shows the Necker cube.

Figure 16: The Necker Cube

It turns out that the model is easily tweaked to account for this phenomenon. Suppose

the agent thinks of the two-dimensional image they are presented with as the projec-

tion of a three-dimensional image onto a two-dimensional plane (akin to a photograph).

We can modify the agent’s task so that their goal is to learn about the underlying three-

dimensional image from the photograph.

Formally, let G : R3 → R2 be a projection of a three-dimensional space onto a two-

dimensional plane. Let P̂ be the true, underlying three-dimensional picture and let P =
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G(P̂) be the corresponding two-dimensional picture that the agent is shown (i.e. the

photograph). Observe that for any feature f of P, there is a corresponding feature f̂ of P̂,

where f̂ = {P̂′ : G(P̂′) ∈ f }. Suppose the agent’s initial knowledge of P is K0, consisting

of the pixels of P. There is a corresponding knowledge set regarding P̂, which we denote

K̂0. Imagine the agent’s task is to start from K̂0 (i.e. codewords on the three-dimensional

picture) and develop a better understanding of the three-dimensional picture.

Notice that it is ambiguous whether an image such as Figure 16 is a three-dimensional

cube or flat. Consequently, if the agent is purely deductive, they will not reach a firm

conclusion. However, the agent might extrapolate to “cube” despite this ambiguity—

for instance because they assign “cube” a short codeword. The agent might also look at

whether a two-dimensional scene obeys the laws of perspective (e.g. whether there are

vanishing points) in deciding whether to deem it three dimensional.

Perceiving motion.

When people view a series of pictures, they may perceive motion. This is the principle

on which animation is based. Take Figure 17, for instance. Someone might look at this

series of images and perceive a black dot moving from left (in Picture 1) to right (in Picture

3).

Picture 1 Picture 2 Picture 3

Figure 17: Perceiving Motion

Recall that we defined the concept of “common features” in Section 4. We can apply

this concept here. Notice that a common feature of Pictures 1, 2, and 3 is “there is a single

black pixel.” Suppose that, in addition to allowing the agent to learn about common

features, we enrich the common feature space, allowing for statements such as “the black
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pixel in Picture 1 is the same as the black pixel in Pictures 2 and 3.” Of course, it is not

identified whether the black pixel is the same or different across pictures—just as it is

not identified whether the Necker cube is a three-dimensional cube or flat. Nonetheless,

the agent could have a common feature space of this type and use extrapolation to select

in cases where there is ambiguity. Observe that if the agent has such a common feature

space and views the black dot as the same across pictures, they will view the black dot as

moving between pictures.

Depth and motion are both examples of how the agent’s feature space can be enriched

and extrapolation can be used as the tool for selection when there is ambiguity.

6 Conclusion

The Gestalt psychologists’ observation that seeing the parts is different from seeing the

whole has become a foundational idea in cognitive psychology and neuroscience. Inte-

grating information, and developing an understanding of what it means, is seen as one

of the key challenges our brains face. Computer science and information theory are also

based on the idea that processing information is far from straightforward. Economics, in

contrast to these other disciplines, typically treats the information processing problem as

a black box.

This paper builds a framework that helps bridge economics with these other disci-

plines. We assume that agents have unlimited ability to store information—unlimited

hard-drive space, so to speak. However, they have limited working memory (akin to

RAM). Working memory is the place where agents integrate information and develop

a big-picture understanding of what it means. We show that limited working memory

bounds agents’ ability to draw conclusions.

We also explore, in this context, the use of extrapolation by agents. On the one hand,

extrapolation allows agents to reach further than they can with deduction alone, poten-

tially reaching more correct conclusions. In this sense, the agent avoids Type I error. On
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the other hand, extrapolation introduces the possibility of wrong conclusions (Type II

error).

This paper leaves a number of unanswered questions. In particular, we do not take a

stance on how people make decisions when they have a partial, evolving, and potentially

conflicting understandings of the world. There is evidence that people find it difficult to

make decisions when they lack an understanding of the situation or feel conflicted (see

Shafir et al. (1993)).

In addition, there are aspects of the reasoning process itself that require further explo-

ration. How, for instance, are the contents of the agent’s working memory determined?

The work of Shleifer and co-authors suggest that there are bottom-up processes at work

(i.e. the salience of information) while the literature on rational inattention emphasizes

the role of top-down processes (i.e. people make decisions regarding what deserves at-

tention).

As we hinted at in Section 5, multi-agent settings may be a particularly fruitful appli-

cation of the theory. For instance, the model speaks to Simon’s idea that agents’ collective

rationality may exceed their individual rationality. The model also suggests important

levers that can be utilized for persuasion.
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7 Proofs

To establish Proposition 2, we will first state and prove two lemmas.

Lemma 1. Consider a 100 × 1 grid. Let task τ = (F, P), where F consists of all 2100 possible
pictures and P is any given picture. (In words: the agent’s task is to identify picture P perfectly.)
Then Lmin(C∗(τ), τ) = 2.

Proof of Lemma 1. Let the pixels of P, from top to bottom, be {p1, p2, . . . , p100}. For each
of m = 1, . . . , 100: (i) denote the m × 1 codeword that corresponds to a single m × 1
subpicture consisting of pixels (from top to bottom) {p1, p2, . . . , pm} by cm; (ii) denote the
1× 1 codeword that corresponds to the single pixel pm by c′m; (iii) denote the m × 1 region
corresponding to the first m pixels of P from the top as Rm; and (iv) denote the 1 × 1
region corresponding to the pixel pm as R′

m.
Choose code C so that each m × 1 codeword cm has length 1. (This is always possible

because up to two m × 1 codewords can have length 1.)
The following sequence of working memories will successfully identify P. In the initial

period t = 0, load the individual pixels c1 for region R1 and c′2 for region R′
2 into working

memory W0, so that codeword c2 for region R2 is added to the knowledge set. In each
subsequent period t ≥ 1, load the codewords ct for region Rt and c′t+1 for region R′

t+1 into
Wt, so that codeword ct+1 for region Rt+1 is added to the knowledge set. At the end of
t = 98, the agent will have learned c100 for R100, which corresponds to the whole picture
P. Notice that in each step, exactly two length-1 codewords were loaded into working
memory; so L = 2 suffices.

Lemma 2. Consider a 100 × 1 grid. Let task τS = (F, P̂) where F and P̂ both consist of all 2100

possible pictures. (In words: the agent’s task is, given any 100 × 1 picture, to identify the picture
exactly.) Then Lmin(C∗(τS), τS) ≥ 3.

Proof of Lemma 2. Assume towards a contradiction that there exists a code C under which
the task τS can be achieved with working memory 2. Then for each picture P, there
must be some pair of length-1 codewords c and c′ and corresponding regions R and R′

(implying corresponding features f and f ′ ̸= f ) that uniquely identify P, in the sense
that f ∩ f ′ = {P}. This implies that there must be at least as many distinct quartets
{(c, R), (c′, R′)} (consisting of two codeword-region pairs) as there are distinct pictures,
of which there are 2100. For each m ∈ {1, . . . , 100}, there are only two distinct length-1
m× 1 codewords and 101−m distinct m× 1 regions, corresponding to 2(101−m) distinct
m × 1 codeword-region pairs; thus there are no more than

(2
100

∑
m=1

(101 − m))2 = 101002

distinct quartets, which is fewer than the required 2100 pictures. The result holds by con-
tradiction.
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Proof of Proposition 2. Consider a 100 × 1 grid. Denote the number of possible pictures
on this grid as S = 2100. Enumerate the S possible 100 × 1 pictures as P1, . . . , PS, in any
arbitrary order. Consider a series of tasks τi = (F, P̂i), i = 1, . . . , S, where

P̂i = {P1, . . . , Pi}.

Let Li = Lmin(C∗(τi), τi) be the minimum working memory required to achieve task τi.
Observe that L1 = 2 (by Lemma 1); that Li is weakly increasing in i; and that LS ≥

3 (by Lemma 2). Let j = min{i : Li ≥ 3}, and let τ′
j = (F, Pj). Assume towards a

contradiction that C∗(τj−1) ∩ C∗(τ′
j ) contains at least one element C. Notice that, under

this assumption, every picture Pi with i ∈ {1, ..., j} can be exactly identified using code C
and working memory constraint L = 2; thus it must hold that C is an optimal code for
τj with Lmin(C, τj) = 2. This contradicts our construction of j; thus C∗(τj−1) ∩ C∗(τ′

j ) =
∅.

Proof of Proposition 3.

Path dependence. Consider the following setting. (a) α = 0.01, and β = 0. (b) P is a 3 × 1
picture where the top two pixels p1 and p2 are black and the bottom pixel p3 is white;
(c) c1 is a 3 × 1 codeword corresponding to the feature “the picture is either black-white-
black or white-black-white”, and c2 is a 3 × 1 codeword corresponding to “the picture is
either all black or all white”; (d) c3 is a 2 × 1 codeword corresponding to the feature “the
pixels in this 2 × 1 region are not all black”, and c4 is a 2 × 1 codeword corresponding to
the feature “the pixels in this 2 × 1 region are not all white”; (e) each of c1, c2, c3, c4 have
length one; (f) the agent’s working memory capacity is L = 2.

P c1 c2 c3 c4

Figure 18: Proof of Path Dependence

Consider an initial working memory where the codeword for the lone white pixel is
loaded into W0, and the codeword c1 is evaluated. In this case, the fit of codeword c1 is

ΦR(c1, W0) =
ZR(W0, c)
ZR(W0)

= 1/4,

which exceeds the inclusion threshold α = 0.01; so c1 is added to the knowledge set.
We claim that in all subsequent extrapolation steps, (a) c2 is never added to the knowl-

edge set, and (b) c1 is never removed from the knowledge set. To see why, observe the
following. (a) When evaluating c2, the codeword c1 has usefulness 2/3 which exceeds
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that of any other length-1 codeword-region pair, and thus is always included in working
memory; but then c2’s fit equals zero, and is always rejected. (b) We may confirm case-
by-case that every other length-1 codeword c—applied to any region R that is compatible
with c— is consistent with c1, in the sense that the feature implied by c and R has at least
one common element with the feature implied by c1. This means that regardless of which
length-1 codeword is loaded into working memory when evaluating c1, the fit is at least
1/8 and thus exceeds the threshold α, and thus that c1 is never subsequently excluded.

Alternatively, consider an initial working memory where the codeword for the lone
white pixel is loaded into W0, and the codeword c2 is evaluated. In this case, the fit of
codeword c2 is

ΦR(c1, W0) =
ZR(W0, c)
ZR(W0)

= 1/4,

which exceeds the inclusion threshold α = 0.01; so c2 is added to the knowledge set. We
can further retrace our argument from the first case (where c1 instead of c2 is initially eval-
uated), with appropriate adjustments, and conclude that in all subsequent extrapolation
steps, (a) c1 is never added to the knowledge set, and (b) c2 is never removed from the
knowledge set.

Thus, path dependence is possible.

Cycling. Consider the following setting. (a) α = 1, and β = 0.99. (b) P is a 2 × 1 picture
where the top pixel is black and the bottom pixel p2 is white; (c) c1 is a 2 × 1 codeword
corresponding to the feature “the bottom pixel is white”; (d) c1 has length one; (e) the
agent’s working memory capacity is L = 2.

P c1

Figure 19: Proof of Cycling

Consider the following sequence of extrapolations.

1. In period 0, the agent evaluates c1 by loading the bottom (white) pixel into working
memory W0. The fit of c1 is then

ΦR(c1, W0) =
ZR(W0, c1)

ZR(W0
= 1,

which meets the threshold α = 1; so c1 is successfully added to the knowledge set.

2. In period 1, the agent again evaluates c1, this time by loading the top (black) pixel
into working memory W0. (Note that the only features in the knowledge set be-
sides c1 correspond to individual pixels, so the usefulness criterion has no bite in
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determining which codeword gets loaded into working memory.) The fit of c1 is
then

ΦR(c1, W1) =
ZR(W1, c1)

ZR(W1
= 0,

which fails to meet the threshold β = 0.99; so c1 is removed from the knowledge set.

3. In period 2, the agent repeats their extrapolation from period zero: they evaluate c1
by loading the bottom (white) pixel into working memory W2. The fit of c1 is then

ΦR(c1, W2) =
ZR(W2, c1)

ZR(W2)
= 1,

which meets the threshold α = 1; so c1 is successfully added to the knowledge set.

It follows that cycling occurred: c1 ∈ K1(R), c1 /∈ K2(R), c1 ∈ K3(R) where R is the region
covering the entire picture.

Patchwork Quilt Consider the following setting. (a) α = 0.01, and β = 0. (b) P is a
2 × 1 picture where the top pixel is black and the bottom pixel p2 is white; (c) c1 is a 2 × 1
codeword corresponding to the feature “there is exactly one white pixel”, c2 is a 2 × 1
codeword corresponding to the feature “the picture is either all black or all white”, c3 is a
2× 1 codeword corresponding to the feature “at least one pixel is white”, and c4 is a 2× 1
codeword corresponding to the feature “at least one pixel is black”; (d) each of c1 and c2
have length two, while each of c3 and c4 have length one; (e) the agent’s working memory
capacity is L = 3.

P c1 c2 c3 c4

Figure 20: Proof of Patchwork Quilt

Consider the following sequence of extrapolations.

1. In period 0, the agent evaluates c1 by loading the bottom (white) pixel into working
memory W0. The fit of c1 is then

ΦR(c1, W0) =
ZR(W0, c1)

ZR(W0)
= 1/2,

which meets the threshold α = 0.01; so c1 is successfully added to the knowledge
set.
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2. In period 1, the agent evaluates c2, again by loading the bottom (white) pixel into
working memory W1. (Note c1 cannot be used to evaluate c2 because they both have
length 2, so cannot both fit into working memory given L = 3.) The fit of c2 is then

ΦR(c2, W1) =
ZR(W1, c2)

ZR(W1)
= 1/2,

which meets the threshold α = 0.01; so c2 is added to the knowledge set.

At the end of the second period, c1 and c2 are both in the knowledge set. We claim that
they will both remain forever in the knowledge set. To see why, note that each of the
two codewords have length two, and thus (given L = 3) can each only be removed by
evaluation against a length-one codeword. However, we may check case-by-case that
every codeword-region pair (c, R) where c is a length-one codeword is compatible with
each of c1 and c2, in the sense that they share at least one common element; which means
that any evaluation of c1 or c2 using a length-one codeword will generate a fit of at least
1/4, which exceeds the rejection threshold β = 0. The claim holds, and we conclude that
a patchwork quilt persists.
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